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Abstract

Colorectal Cancer is known to be one of the leading reasons for deaths, with the death toll rising every year.
Thus early detection of this cancer is essential for starting treatment at a premature stage, so as to avoid any
serious consequences in the latter stage. In this report, we have proposed three different techniques to exploit
histopathology images for early detection of Colorectal Cancer in patients. The first technique involves creating
multiple pipelines for segmenting the images using advanced image processing algorithms, like morphology,
unwanted object removal, contour detection, watershed segmentation, etc. The average dice score is 82%. In the
second technique, we have employed various methods like Local Binary Patterns (LBP) and Gabor filters for
feature extraction from the images and then using Machine Learning algorithms for classifying the images into
different classes, like Normal, Polyp, Low-grade IN, High-grade IN, Serrated Adenoma and Adenocarcinoma.
The classification accuracy for this solution is 83%. The final technique involves using Deep Learning models
with different backbones for performing segmentation of the histopathology images. After further
experimentations, it can be concluded that the best performance for histopathology image segmentation is given
by the UNet model with an EfficientNet-B2 backbone (with a dice score performance of 93%), owing to its
efficiency and capability in learning the deep semantic representative features.

Keywords: Colorectal Cancer, Histopathology Image Classification and Segmentation, Advanced Image
Analysis, Machine Learning and Deep Learning

1. Introduction

Colorectal cancer (CRC), also known as bowel cancer, is the second highest cause for death related to cancer
globally. According to the World Health Organization, in 2020, 1.9 million new cases and 930,000 deaths were
estimated globally because of CRC. The results of prediction of CRC by 2040 shows that new cases will increase
by 63% and deaths will increase by 73%. Colorectal cancer is a type of cancer that develops in the rectum or the
colon of the digestive tract or system. It starts as a noncancerous clump of small muscle of cell type called polyps,
and if left untreated, it sometimes turns into cancer. Bowel diseases such as ulcerative colitis and chronic digestive
diseases increase the chance of colon cancer. CRC typically originates from precancerous growths called
adenomatous polyps. Colorectal Polyps refers to unwanted growth on the mucosal surface. It has a similar shape to
normal cells. Moreover, there are various polyp types. Intraepithelial neoplasia (IN) is the most critical
precancerous stage. It has different luminal sizes and shapes, dense arrangement, the nuclei are enlarged and vary in
size. Adenocarcinoma is a malignant digestive tract tumor with irregular distribution of luminal structure. The
nuclei are large in this stage. Serrated adenoma is a very uncommon lesion, the shape is thought to be similar to the
colon with tubular or cerebral openings. Early-stage CRC often presents without symptoms. However, the risk of
developing the disease increases significantly with age, with a higher prevalence observed in individuals above 50.
Histopathological examination remains the gold standard for detecting this disease. As in the present generation the
unhealthy lifestyle is widespread as the fashion of relying on processed food, heavy alcohol consumption, smoking,
and thus, colon cancer is undeniably a rampant concern in today's society. It's among the most common types of
cancer globally, with incidence rates varying across different regions and populations. Detection of colon cancer in
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the early stages improves treatment results and increases the probabilities of successful recovery. Recognizing
issues or health conditions in their early stages every so often offers several advantages. That is, catching it early
allows for more effective interventions, possibly preventing it from intensifying into a bigger problem.

Treatment with Hematoxylin and Eosin (H&E) is a common approach which stains tissue to show the inclusion
between nucleus and cytoplasm, showing location of lesion. However, there are problems in the diagnostic process:
The diagnostic result becomes subjective to each medical expert and human error. Nowadays, Computer-Aided
Diagnostics (CAD) helps to improve accuracy in the aspect of image segmentation. Integrating image processing
techniques, machine learning (ML) and deep learning (DL) methods with histopathological data can definitely
augment the effectiveness and precision of early diagnosis and classification of colorectal cancer. ML algorithms
can inevitably extract appropriate features from histopathological images, such as the texture, shape, and spatial
arrangement of cells and tissues. DL models learn classified representations straight from raw image data,
supporting them to identify complex patterns that may be difficult for traditional algorithms to distinguish.
Histopathological images provide high-resolution information of tissue morphology, cellular structures, and
pathological features, which is significantly supportive for the ML algorithms to detect elusive changes and
revealing of the cancerous lesion with better accuracy. It is helpful in analyzing the histopathological features such
as tumor size, shape and density aiding in early intervention and enhanced patient results and aids in the treatment
planning which boost the chance of survival.

Patients with Colorectal cancer have personalized treatment according to the stage of tumor determined by
biomarkers, clinical data, histopathological analysis, molecular pathology of tumor cells. Treatment with
Hematoxylin and Eosin (H&E) is a common approach which stains tissue to show the inclusion between nucleus
and cytoplasm, showing location of lesion. Hematoxylin stains cell nuclei in purple-blue hue, while Eosin stains
cytoplasm and extracellular in pink-red hue. The advancement in Machine learning and Deep learning in
Computer-Aided Diagnostic (CAD) helps to improve accuracy in the aspect of image segmentation. However,
medical experts need cross validation to confirm the diagnostic and tumor staging, which can lead to human error
since it is subjective to each medical experts

In this report, we propose 3 solutions for classifying and segmenting 6 tumor types of Colorectal cancer stages
which are Normal, Polyp, Low-Grade and High-Grade Intraepithelial Neoplasia (IN), Adenocarcinoma, Serrated
Adenoma. In the first solution, we developed an advanced Image Processing based pipeline(s) to perform
histopathology image segmentation. The second solution uses feature extraction techniques, followed by Machine
Learning based methods for classifying the histopathology images into one of the six classes. Finally, the last
pipeline employs Deep Learning for performing segmentation of the histopathology images.

2. Related Works

Diagnosing colorectal cancer through histopathological images is a complex task that has garnered significant
research interest. Various studies have focused on developing image processing, machine learning and deep
learning methods specifically for segmenting and classifying the lumens in these images. In this section, we present
the literature review that highlights key studies relevant to this topic.

In 1985, Fenoglio-Preiser and Hutter [1] discussed the pathologic diagnosis and clinical significance of
colorectal polyps, shedding light on the importance of accurate diagnosis and management of these lesions in
preventing colorectal cancer. Their work underscored the critical role of histopathological examination in
identifying and characterizing colorectal polyps, which can serve as precursors to malignant tumors. However,
challenges remain in accurately distinguishing between benign and malignant polyps, highlighting the need for
improved diagnostic strategies and technologies to enhance patient care and outcomes.

Gurcan et al. in 2009 [2] provided a comprehensive review of histopathological image analysis, covering
various methodologies, including feature extraction, pattern recognition, and classification algorithms. Their review



underscored the significance of computational approaches in interpreting complex tissue structures and identifying
cancerous regions, contributing to advancements in cancer diagnosis and prognosis. In 2011, Pietikainen et al. [3]
discussed the application of computer vision techniques, specifically local binary patterns (LBP), in analyzing
histopathological images. LBP offers a robust method for texture analysis, facilitating the identification of
abnormal cell patterns indicative of cancerous tissues. This approach holds potential for improving the accuracy of
cancer diagnosis through automated image analysis. However, one drawback of LBP is its sensitivity to variations
in image acquisition parameters such as resolution and illumination. Inconsistencies in these parameters can affect
the performance of LBP-based analysis, leading to potential misinterpretation of histopathological features and
compromising the reliability of the diagnostic outcomes.

Rathore and Iftikhar in 2016 [4] presented CBISC, which leverages epithelial cell morphology for segmenting
and classifying colon biopsy images. The segmentation module detects elliptic cells and calculates unique features
for each pixel, with optimization through a genetic algorithm. Classification relies on gray-level features, with
support vector machines achieving reasonable results. This approach underscores the importance of
morphology-based segmentation for accurate diagnosis. Mármol et al. in 2017 [5] presented a comprehensive
overview of colorectal carcinoma, encompassing its epidemiology, pathogenesis, clinical manifestations, diagnostic
methods, and therapeutic interventions. The review offered valuable insights into the multifactorial nature of
colorectal cancer, emphasizing the importance of early detection and personalized treatment strategies. Later in the
same year, Chaddad and Tanougast [6] explored texture analysis of abnormal cell images for predicting the
continuum of colorectal cancer by leveraging advanced image processing techniques. This method enabled early
detection and characterization of colorectal cancer, facilitating more targeted and personalized treatment strategies.

Cao et al. [7] proposed a novel approach to enhance the performance of transfer learning without fine-tuning for
breast cancer histology images. By leveraging dissimilarity-based multi-view learning, their method achieved
notable improvements in classification accuracy, providing a promising avenue for more efficient and effective
cancer detection strategies. Rathore et al. [8] proposed a comprehensive multi-step gland segmentation method,
leveraging ellipsoidal modeling of tissue components. Their aim is to improve cancer detection and grading by
capturing cellular morphology, spatial glandular patterns, and texture through the extraction of multi-scale features.
These features are classified into gland-based, local-patch-based, and image-based categories and utilized in a
hierarchical ensemble-classification approach.

Kurmi et al. in 2019 [9] investigated tumor malignancy detection using histopathology imaging techniques. This
method combines handcrafted features and shape features using a bag of visual words (BoW) for image
classification. It involves a multistage segmentation technique to localize nuclei in histopathology images, starting
with stain decomposition and histogram equalization to enhance the nucleus region. Key point extraction is
performed using the fast radial symmetry transform, followed by nuclei region estimation with normalized graph
cut, and boundary estimation via a modified gradient approach. Features from these localized regions are extracted
and categorized into handcrafted and shape features using BoW. Tested on the Bisque and BreakHis datasets, the
method achieves average accuracies of 93.87% and 96.96%, respectively, suggesting enhanced diagnostic
performance by effectively integrating both feature types for image classification in biomedical imaging,
particularly for cancer diagnosis and grading.

Gupta et al. (2021) [10] proposed a methodology for breast cancer detection from histopathology images using
modified residual neural networks. By optimizing deep learning architectures, their approach achieved impressive
accuracy in detecting breast cancer, highlighting the potential of deep learning techniques in improving cancer
diagnosis outcomes. In a similar vein, Babu et al. [11] introduced an optimized method addressing the challenges
posed by variability in image characteristics and magnifications. He proposed a magnification-independent
segmentation approach. It combines connected component area and double density dual tree DWT coefficients for
segmentation, followed by fuzzy c-means clustering for feature reduction. An artificial neural network optimized
with salp swarm optimization classifies images into normal and abnormal. Evaluation across four datasets with
varied magnifications show significant improvements over existing techniques, promising reliable cancer detection.



Ben Hamida et al. [12] addressed the challenges of histopathological image segmentation with weakly
supervised learning using attention gates. Their proposed model achieved improved image segmentation results,
enhancing the accuracy of colon cancer detection. It addresses the challenges in using deep learning models for
histopathological image segmentation tasks. The authors introduce enhanced models of the Att-UNet, proposing
various configurations for skip connections and spatial attention gates within the network. These gates facilitate the
training process by helping the model avoid learning irrelevant features. The Alter-AttUNet model, which includes
these modules, achieves increased robustness and improved image segmentation results. Talukder et al. [13]
proposed a machine learning-based approach involving a hybrid ensemble feature extraction model designed to
efficiently identify lung and colon cancer. This model integrates deep feature extraction with ensemble learning and
employs high-performance filtering specifically tailored for cancer image datasets. The model's performance was
evaluated using the LC25000 histopathological dataset, which includes lung and colon cancer images. The results
indicate that the hybrid model achieved remarkable accuracy rates: 99.05% for lung cancer, 100% for colon cancer,
and 99.30% for both lung and colon cancers. These findings demonstrate that the proposed strategy significantly
outperforms existing models, highlighting its potential application in clinical settings.

Tharwat et al. [14] conducted a comprehensive study on colon cancer diagnosis utilizing machine learning and
deep learning techniques. They investigated various modalities and analysis techniques, such as support vector
machines (SVMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and other deep
learning architectures. These approaches involved data preprocessing, feature extraction, and model training using
machine learning algorithms or deep neural networks. The study provided insights into the potential applications of
these methods in improving diagnostic accuracy. Sakr et al. [15] proposed an efficient deep learning approach
specifically tailored for colon cancer detection. Their method leveraged advanced neural network architectures,
such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs), trained on large-scale
histopathological image datasets. By employing deep learning techniques, their approach demonstrated promising
results in accurately identifying colon cancer tissues from histopathological images.

Furthermore, Shi et al. in 2023 [16] introduced the EBHI-Seg dataset, a valuable resource for image
segmentation tasks in enteroscopy biopsy histopathological hematoxylin and eosin images. This dataset is made
publicly available, which contributed to the advancement of segmentation techniques in the field of histopathology.

In conclusion, recent advancements in histopathological image analysis have significantly enhanced our ability
to detect and diagnose cancer. By leveraging innovative computational techniques, such as transfer learning, texture
analysis, and deep learning, researchers have made substantial progress in automating cancer detection processes
and improving diagnostic accuracy. Continued research in this field can further advance our understanding of
cancer pathology and help improve patient outcomes through early detection and treatment strategies.

3. Dataset Description

We have used the publicly available EBHI-Seg dataset [16] with 4,456 images, consisting of 2,228
histopathology section images and 2,228 ground truth images. The input images (and their corresponding ground
truth segmentation) have a size of 224×224 pixels in Portable Network Graphic (PNG) format. The dataset is
available at: https://doi.org/10.6084/m9.figshare.21540159.v1

This dataset consisted of 5 types of Intestinal biopsy; Normal, Polyp, Intraepithelial Neoplasia (IN),
Adenocarcinoma, Serrated Adenoma, as described below:

1. Normal: This category contains non-diseased images of the colorectal tissue sections; that is, they do not
have any kind of infection, when viewed under a microscope. They have a very regular lumen structure. This class
has 76 histopathological images in the dataset.
2. Polyp: Polyps are unwanted growth of a mass/blob on the mucosal surface of the body. These polyps have a

structure similar to that of the normal images, but their histopathological structures are different. The polyps are not
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necessarily malignant. Infact, in most cases they are benign, however, their detection is important, as they might
develop into a malignant cancer over the years. There are a total of 474 images of this class in the dataset.
3. Intraepithelial Neoplasia (IN): This is the most critical type of precancerous lesion. Its histopathological

structure shows heavily branched adenoid structure, dense arrangement and highly irregular luminal shapes and
sizes, because the nucleus has been highly enlarged. These images are further classified into two types: Low-grade
INs and High-grade INs; with the latter displaying a more pronounced structural misalignment than the former one.
Low-grade IN class has 637 images, and High-grade IN class has 186 images in the dataset.
4. Adenocarcinoma: Adenocarcinoma is a very malignant type of digestive tract tumors that can develop from

a polyp, and they have a very irregular distribution of the lumen. It is very difficult to delineate the structures of the
lumen during observations. The image count of this class in the dataset is 795 images.
5. Serrated Adenoma: They are a very uncommon type of lesions. The surface appearance of this type of

lesions are not very well defined, but are considered similar to that of the colonic adenomas with a tubular or
cerebral crypt opening. This class has only 58 images in the entire dataset.

Sample images of each of these categories are displayed below in Fig. 1. In histopathology images, the target is
to segment the lumen. The lumen borders are formed by cells.

Fig. 1: Sample images of each category of histopathological images, with their corresponding segmentation

4. Methodology
In this section, we have discussed the detailed description of the methodology we adapted for performing our

task, including the evaluation results of these methodologies. Particularly, this section has three subsections:
1. Image Processing
2. Machine learning
3. Deep Learning

In image processing, we deal with segmenting the histopathology images using only image processing and
image analysis techniques. In Machine Learning, our target is to classify the images into their corresponding types.
And in Deep Learning, our aim is to use Deep Learning based models for segmenting the histopathology images.
For evaluation purposes, we propose to use the following metrics (TP: True Positive, FP: False Positive, FN: False
Negative and TN: True Negative):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) = 𝑇𝑃
𝑇𝑃+𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) = 𝑇𝑃
𝑇𝑃+𝐹𝑁



𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐽) = 𝑇𝑃
𝐹𝑃+𝑇𝑃+𝐹𝑁

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 (𝐷) =  2𝑇𝑃
𝐹𝑃+2𝑇𝑃+𝐹𝑁

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴) = 𝑇𝑃
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑃

For the segmentation tasks, we used Precision, Recall, Jaccard Similarity, Dice Score and Accuracy; and for the
classification task, we used Precision, Recall and Accuracy.

4.1. Image Processing

In this section, we proposed to solve the problem of Histopathology image segmentation by proposing a pipeline
that is based only on Image processing and Image Analysis concepts. More precisely, we propose a set of pipelines,
with each pipeline focusing one class of histopathology images; that is, we require prior knowledge about the
classes of the images for segmenting them. However, these pipelines are not very different from each other. Fig. 2
shows the general pipeline that has been used, and this pipeline has been tweaked for each class, depending on the
image complexity. In this flow diagram, the blue arrows represent the operations that are performed by all the
pipelines, the black arrow represents the operations performed by some pipelines and skipped by others, the red
lines show the operations performed in place of those skipped pipelines, and the pink arrows represent branching
and merging operations. These pipelines make an assumption that a lumen will be segmented, only if a major
portion of the lumen is present in the image. The reason for this is explained later.

Fig. 2: The general pipeline describing the steps followed for performing the segmentation. It is
divided into three sub-pipelines: Image Preparation Pipeline, Lumen Segmentation Pipeline, and

Segmentation Refinement Pipeline.

The complexity of this segmentation task is evident from Fig. 1, which clearly shows the high variation of these
types of images. The complicacies of the images are due to the:



1. Variation in shape and size of the lumen
2. Variation in the count of lumen in each image and the distance between them
3. Lack of a proper or strong boundary around the lumen
4. Lumens are completely surrounded by cells
5. Variation in color, intensity and contrast among the images

Fig. 3: Variations in the lumen structures of Histopathological images in the class ‘Normal’

Even the images in a single class do not adhere to a single variation. For example, Fig. 3 shows five sample
images, all belonging to the class “Normal”. The extent of variation of images in each class is well depicted by this
image. We now discuss the pipeline in detail.

The entire pipeline is divided into three major sub-pipelines, namely the Image Preparation Pipeline, the Lumen
Segmentation Pipeline and the Segmentation Refinement Pipeline. The Image Preparation pipeline involves
applying essential operations to the input image to convert it into a form, essential for segmentation. This pipeline
is present to deal with the variation in images (mainly tackle the irregular variation in color, intensity and contrast,
the irregular distribution of cells around the lumen and the cracked boundaries), and effort has been made to
convert it to a standard form for segmentation purposes.

4.1.1. Image Preparation Pipeline

I. Conversion to Gray-Scale: The color images were converted to Gray-Scale images because the RGB channels did
not show significant characteristics that could have been useful towards the segmentation. Color space
conversion to HSV or LAB was also not found useful.

II. Inversion of the Gray-Scale image: The inversion of grayscale image was proposed to deal with images where
the surrounding of the lumen is brighter than the lumen center (for example, when the surrounding is sparse,
having a less number of cells, or due to the difference in intensity). As can be expected, this operation is not
applied on all images, but only on the images which satisfy the above mentioned criteria. Inversion will
cause the lumen to be the brighter object, which is a requirement for our pipeline. Inversion is given by the
following equation (Here is the grayscale image to be inverted):𝑔𝑟𝑎𝑦

𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑_𝑖𝑚𝑎𝑔𝑒 = 255 − 𝑔𝑟𝑎𝑦

III. Grayscale Morphology (Erosion): After ensuring that the lumen is brighter than the surrounding, a strong
erosion is applied on the images to enlarge the darker regions (which is generally the cells surrounding the
lumen). This step ensures that most of the cells that form the cracked lumen boundary, enlarge and merge,
thus strengthening the boundary. This erosion operation is given by (where is the grayscale image and is𝐴 𝐵
the structuring element, centered on ):𝑥

𝐴 ⊖ 𝐵 =  {𝑥|𝐵
𝑥

⊆ 𝐴}

IV. Smoothing: Then a smoothing filter is applied to the above output to smoothen the image and join the cells in
the lumen boundary that are still separated after the above morphological step. A custom filter has been
designed for this purpose:



The filter is designed to give more importance to the surrounding object pixels than the center pixel. This is
particularly helpful when the center filter element is on the boundary crack and the neighboring elements are
on cells; the result is the merged boundary. The 1/75 multiplier in the filter is applied for normalization
purposes. This filter has been found to suit our case better than the predefined smoothing filters like Gaussian
filter and Median filter.

After ensuring that the issues due to the intensity variations have been resolved, and the cracked border have
been merged, we now move on to the Lumen Segmentation Pipeline. A small thing to be noted is that, after the
strong grayscale erosion, the lumen centers in the new image are smaller than that in the original image. This will
be taken into account in the later stages of the overall pipeline.

4.1.2. Lumen Segmentation Pipeline

V. K-Means: K-Means algorithm is then applied, with the number of clusters as 2. This will divide the image into
two regions: the brighter and the darker region. K-Means was found to do a much better job in segmenting
the image into two regions, than any thresholding method.

VI. Thresholding: The job of thresholding here is just to binarize the K-Means output. We used Triangular
Thresholding, since now we just have two distinct peak points in the image histogram.

VII. Filling holes: This is an algorithm developed to fill the gaps inside any closed contour. This step is required to
ensure that the latter stages do not affect the already segmented lumen centers. The algorithm for filling holes
is depicted in Fig. 4.

Fig. 4: The Hole Filling Algorithm used for filling the holes in the segmentation

The above algorithm finds the contours of the input thresholded image. It then performs the point polygon
test on every pixel of the input, which returns a positive value in case the current point under consideration is
inside a closed contour; otherwise it returns a negative value. If the value is positive then it is assigned to the
foreground class.



VIII. Noise Elimination: This algorithm removes the small background elements, which can be considered as
noise/unwanted elements. Fig. 5 represents the noise elimination algorithm used.

Fig. 5: Noise Elimination Algorithm for removing unwanted objects based on size

The algorithm uses connected components to get the individual objects in the segmentation mask. Then the
pixel count of each object is used to compare with a threshold and remove objects based on this threshold.
This threshold is itself a variable, which is different for each image and is given by the following formula:

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑢𝑚(𝑚𝑎𝑥_𝑐𝑖𝑟_𝑙𝑖𝑠𝑡)
5*𝑠𝑐𝑎𝑙𝑒

Where, is the list of pixel counts of five largest objects in the mask, and is a parameter𝑚𝑎𝑥_𝑐𝑖𝑟_𝑙𝑖𝑠𝑡 𝑠𝑐𝑎𝑙𝑒
whose value is decided experimentally. Thus this threshold leverages the average size of lumen centers to set
the threshold. This is essential because the lumen centers are of different sizes in different images. As a
result, one single threshold value can not satisfy all the images.

This Noise Elimination step is where the partially visible lumen centers (at the corner of the image) are
removed from the image, after they are considered as noise, due to their small size (or small pixel count). As
a result, our pipeline incorporates those lumens in the segmentation, which have a significant portion of the
lumen center located within the image; and this explains our assumption stated previously.

IX. Circularity based elimination: This algorithm uses the circularity criteria to eliminate the unwanted elements,
which could not be removed with the above size-based noise elimination algorithm. Fig. 6 shows the
circularity based algorithm employed.

Fig. 6: Circularity based elimination for removing objects based on circularity

This algorithm finds the contours of the objects in the mask, followed by leveraging the contour area and arc
length values to calculate the circularity with the below mentioned formula (where and𝐴 = 𝐶𝑜𝑛𝑡𝑜𝑢𝑟 𝐴𝑟𝑒𝑎

) and then removing the objects which are below a specified circularity threshold value.𝑃 = 𝐴𝑟𝑐 𝐿𝑒𝑛𝑔𝑡ℎ

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  4π𝐴

𝑃2

X. Binary Morphology (Dilation): Then binary morphology is applied to enlarge the remaining contours, which are
the expected lumen centers. This is to compensate for the reduction in size of the lumen center, due to the



grayscale erosion in the previous pipeline. The dilation operation is given by (where is the grayscale image𝐴
and is the structuring element, centered on ):𝐵 𝑥

𝐴 ⊕ 𝐵 =  {𝑥|𝐵
𝑥

∩ 𝐴 ≠ ϕ}

After the Lumen Segmentation Pipeline, the output should have bright pixels corresponding to the lumen
centers. However, the current segmentation is not completely accurate, due to the irregularity in lumen shape and
size, and the complex operations included in the pipeline, which returned a shrinked version of the expected
segmentation. The final dilation in the above pipeline is not enough for getting the expected lumen size due to the
randomness in the lumen border width. Thus, we require the Segmentation Refinement pipeline to further convert
the current output to a more accurate segmentation.

4.1.3. Segmentation Refinement Pipeline

XI. Inversion: The output of the previous pipeline is inverted; so the white pixels now contain two elements: the
background pixels and the lumen border pixels.

XII. Binary Morphology (Erosion): A strong erosion is applied to the inverted image so as to exclude the lumen
border pixels from the white pixels. The white pixels now contain pure background elements.

XIII. Noise Elimination: Some noise or small artifacts may also be introduced into the inverted image due to the
erosion operation. They are removed using the same noise elimination algorithm, as described previously.

XIV. Merging: Now the output of the previous pipeline is merged with the above noise eliminated inversion. The
output is the white pixels containing the lumen center and the background regions. The black region contains
only the lumen boundary.

XV. Watershed Segmentation: Finally, the region-growing based Watershed Segmentation has been applied to the
merged output to get the desired output. This algorithm will expand the lumen center pixels and the white
background pixels (the eroded inversion) until they converge and stop at the lumen border.

The output of the watershed segmentation marks the end of our general segmentation pipeline. Now, we will
discuss the class wise pipelines (Fig. 7), which is a modified version of the general pipeline.

4.1.4. ‘Normal’ and ‘Polyp’ classes

For both ‘Normal’ and ‘Polyp’ classes, we have proposed two different pipelines. One pipeline deals with the
grey images, and the other pipeline focuses on the inverted grey images. Two different pipelines are essential to
deal with the variations in intensity and cell distribution in the background of the histopathology image. This is an
important necessity for our pipeline to execute properly. The segmentation results from the two pipelines are then
given to a circularity based selection algorithm and its output is considered as the final segmentation output. The
Circularity based Selection algorithm is described in Algorithm 1. Fig. 7 (a) shows the entire segmentation process
for the ‘Normal’ and the ‘Polyp’ class. Fig. 8 shows samples of the segmentation quality returned by our pipeline.



Fig. 7: Class-wise pipeline for each class. (a) for classes ‘Normal’ and ‘Polyp’, (b) for classes ‘Low-grade IN’
and ‘Serrated Adenoma’, and (c) for classes ‘High-grade IN’ and ‘Adenocarcinoma’. All the pipelines are

derived from the previously described general pipeline in Fig. 2. The yellow box represents the Image



Preparation Pipeline, the red box represents the Lumen Segmentation Pipeline and the green box represents the
Segmentation Refinement Pipeline.

ALGORITHM 1: Circularity based Selection

Input:
: Output of the first segmentation pipeline𝑠𝑒𝑔_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒1
: Output of the second segmentation pipeline𝑠𝑒𝑔_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒2

: Circularity values of all segmented objects in𝑐𝑖𝑟_𝑙𝑖𝑠𝑡1 𝑠𝑒𝑔_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒1
: Circularity values of all segmented objects in𝑐𝑖𝑟_𝑙𝑖𝑠𝑡2 𝑠𝑒𝑔_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒2

Output:
: The selected output among the two segmentation outputs𝑓𝑖𝑛𝑎𝑙_𝑠𝑒𝑔

1. 𝑐𝑖𝑟1 = 𝑠𝑢𝑚(𝑐𝑖𝑟_𝑙𝑖𝑠𝑡1)
𝑙𝑒𝑛(𝑐𝑖𝑟_𝑙𝑖𝑠𝑡1

2. 𝑐𝑖𝑟2 = 𝑠𝑢𝑚(𝑐𝑖𝑟_𝑙𝑖𝑠𝑡2)
𝑙𝑒𝑛(𝑐𝑖𝑟_𝑙𝑖𝑠𝑡2)

3. 𝑖𝑓 𝑐𝑖𝑟1 > 𝑐𝑖𝑟2:
4. 𝑓𝑖𝑛𝑎𝑙_𝑠𝑒𝑔 = 𝑠𝑒𝑔_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒1

5. 𝑒𝑙𝑠𝑒:
6. 𝑓𝑖𝑛𝑎𝑙_𝑠𝑒𝑔 = 𝑠𝑒𝑔_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒2

Fig. 8: Segmentation output by our proposed pipeline for two input images of ‘Normal’ and ‘Polyp’ class type

Fig. 8 demonstrates that both the pipelines are necessary for getting the final segmentation, as well as shows the
importance of the Circularity based Selection algorithm. Fig 8(a) shows an input image with a dense cell
distribution pattern outside the lumen and thus the first pipeline is suitable for its segmentation, whereas for Fig.
8(b), the second pipeline is required (that is, the inversion of the greyscale image is necessary before further
processing) because the background intensity is higher than the lumen intensity. Furthermore, our segmentation
output for pipeline 1 does not include the lumen at the top right corner in Fig 8(a) (the green box region). This is
due to the assumption stated previously, about the size of the lumen center being considerably large in the input
image for it to be included in the segmentation output.

An alternative approach to use a single pipeline (instead of using two pipelines), and handle the issue of
variations in intensity and cell distribution in the background, would be to calculate the mean intensity difference
between the lumen center region and the background region in the image, and proceed with the gray image or the
inverted gray image based on a threshold value. However, this would require prior knowledge (or an assumption)



about the position and shape of the lumen centers for calculating the mean, which we lack. As a result, this
approach could not be taken into account.

4.1.5. ‘Low-grade IN’ and ‘Serrated Adenoma’ classes

For ‘Low-grade IN’ and ‘Serrated Adenoma’ classes, we again proposed two different pipelines and combined
their results using the Circularity based selection algorithm. As before, the first pipeline deals with grayscale
images and the second pipeline deals with the inverted grayscale images, for reasons similar to the one mentioned
above. The best output is again selected using the Circularity based Selection algorithm. Fig. 7(b) shows the
segmentation pipelines for the classes ‘Low-grade IN’ and ‘Serrated Adenoma’ classes. As can be seen, the
circularity based elimination criteria is no longer needed for segmenting these classes. Fig. 9 shows the
segmentation returned by this combined pipeline. For input 9(a), pipeline 1 outputs an additional object (in the
green box region). This is due to the resemblance of this region with the lumen pattern: a bright central region,
surrounded by densely populated cells; and the elimination algorithms in our pipeline failed to remove this. For
input 9(b), pipeline 2 outputs a better segmentation than pipeline 1. This is because of the large white region in the
top left corner of the input image, which made the actual lumen region darker, leading to a poor performance by
pipeline 1. The pipeline 2 segmentation does not consider the top left corner white region as a part of the lumen.

Fig. 9: Segmentation output for two input images of ‘Low-grade IN’ and ‘Serrated Adenoma’ class type

4.1.6. ‘High-grade IN’ and ‘Adenocarcinoma’ classes

Finally, for the last two classes ‘High-grade IN’ and ‘Adenocarcinoma’, only one pipeline was proposed and
was found to be enough. This pipeline is much simpler than the previous pipelines and is presented in Fig. 7(c).
This pipeline does not even employ the Segmentation Refinement Pipeline (which is described in Fig. 2). This is
because this final sub-pipeline was proposed for segmenting refined lumen borders, and these two classes, being
highly distorted in shape and size, don’t have a proper/definite lumen border. Furthermore, after multiple
experimentations, it was found that the Grayscale Erosion step and the following Smoothing steps are also not
required for these two classes. This is again due to the lack of definite shape, size and borders (as mentioned earlier,
these two operations were initially proposed for fixing the problem of cracked lumen borders in the images). Also,
using these morphology and smoothing operations on a highly distorted image can be destructive, resulting in
further loss of features. Fig. 10 shows the segmentation output returned by this pipeline. Input 10(a) clearly shows a
lack of border around the lumen, thus leading to some minor overflows in the segmentation. Input 10(b) shows
some presence of the lumen border, thus returning a better segmentation than the previous image. However, it skips
the elongated white region inside the lumen. More precisely, our pipeline is designed to skip the white regions from
the input images. But there is some ambiguity in the ground truth segmentation, for example, in image 10(a) the
white regions are included in the background class, whereas in image 10(b) the white region is included in the
foreground class.



Fig. 10: Segmentation output for two input images of ‘High-grade IN’ and ‘Adenocarcinoma’ class type

4.1.7. Results and Discussion

After providing a detailed description about all of our pipelines and also giving an insight into their
segmentation quality, we now present the performance evaluation of these pipelines using different evaluation
metrics mentioned at the beginning of this section. For this purpose, we have considered 50 images from each class.
We have then provided a class-wise segmentation evaluation, followed by the overall evaluation on all classes on
300 images in total; and is displayed in Table 1.

Table 1. Performance Evaluation on all classes individually, followed by the overall evaluation

Precision (P) Recall (R) Jaccard
Similarity (J) Dice Score (D) Accuracy (A)

Normal 0.90 0.78 0.73 0.83 0.81

Polyp 0.89 0.78 0.72 0.83 0.82

Low-grade IN 0.86 0.71 0.63 0.76 0.72

High-grade IN 0.85 0.93 0.80 0.88 0.83

Adenocarcinoma 0.90 0.82 0.74 0.84 0.79

Serrated
Adenoma 0.78 0.85 0.67 0.80 0.73

Combined
Performance over

all classes
0.86 0.81 0.71 0.82 0.78

K-Means [16] 0.62 0.64 0.47 0.62 –

Table 1 shows that the Dice Score values for almost all classes are above 80% and that the Jaccard Similarity
scores for those classes are above 70%, which we consider a pretty good performance, given the complexity of the
images. Both these metrics calculate the extent of overlap between the output segmentation and the ground truth
segmentation. A part of this decreased performance can be attributed to the fact that our method is not detecting the
partially visible lumens at the image borders/corner, due to the assumption/requirement we stated previously (about
the major portion of a lumen center to be included in the image for it to be segmented by our pipeline). However,
an important insight is provided by the Precision and Recall values. The Precision values are high (above 80% for
most classes), which shows that the number of true positives w.r.t the total number of positive class outputs is high;
whereas the Recall values are a bit lower (above 75% for most classes), that is the number of true positives w.r.t the



actual number of positive values in the ground truth is a bit lower. The credit for these performance values can be
given to the Segmentation Refinement Pipeline, which used the watershed algorithm to expand the lumen center. If
not used, the lumen borders would not have been segmented properly, leading to an even lower recall rate, and a
lower dice and jaccard score (however, in that case the precision would have been even higher because there would
have been a lesser number of false positives, leading to an high imbalance between the precision and recall values).
However, after using watershed segmentation, there have been some leakages in segmentation, thus it led to an
increase in false positives and a decrease in false negatives. This increased the recall, dice and jaccard score, thus
preserving the precision-recall trade-off. Further, in the last row of the table, we have presented the best performing
image processing based segmentation method used in [16]. It is clear that our proposed pipeline outperformed their
methodology by a large margin.

4.2. Machine Learning

In this section, we deal with the task of classifying the input histopathology images into one of the six classes:
Normal, Polyp, Low-grade IN, High-grade IN, Adenocarcinoma and Serrated Adenoma. For this purpose, we have
employed various image based feature extraction techniques, which are then given to a Machine Learning model
for classification. This section is divided into the following subsections: Feature extraction, Classification, and
Results and Discussion.

4.2.1. Feature Extraction

For the purpose of feature extraction, we used the following extractors: Gray-Level Co-occurrence Matrix
(GLCM), Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG) and Gabor filters. With these
feature extractors, we have tried to extract the essential underlying information from the image like textural
features, orientational features, intensity features, etc. As a preliminary requirement, we have converted all the
color images to grayscale images before applying any feature extraction.

Gray-Level Co-occurrence Matrix (GLCM): GLCM is a statistical method for capturing textural features that
creates a pixel intensity based co-occurrence matrix, which can be used to calculate different measures. It requires
two main parameters: the distance parameter (let it be d) and the angle parameter (let it be θ). At any given time
frame, it will capture the texture pattern between two pixels d distance apart, at an angle θ to each other. The
co-occurrence matrix contains the total count of these pairwise pixel intensities. Thus, for a more detailed
description of the texture feature to be encapsulated, multiple pixel distances, in combination with multiple angles
need to be considered. After normalization, this matrix represents the probabilistic distribution of the pairwise pixel
intensities.

For our purposes, we used GLCM with multiple values of distance and angles. This will enable us to capture
textural information in the image at different angles, distances and scales, thus helping us to achieve a certain level
of translational and rotational invariance. In particular, for d we used three values: {5, 10, 15}; and for θ we used
four values: {0, , , }. Also, for achieving some contrast and illumination enhancement, we appliedπ
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histogram equalization on the images, before applying GLCM to the images for extracting features. From the
co-occurrence matrix, we have calculated the following features:

1. Contrast: It calculates the intensity difference between the neighboring image pixels.
2. Correlation: It calculates the correlation (positive or negative) between the neighboring image pixels.
3. Energy: It calculates the randomness in the image texture, that is it measures the un-uniformity in pixel

distribution, using the values of the co-occurrence matrix.
4. Homogeneity: It gives a measure of the uniformity of the textural patterns in the image, by measuring the

closeness of the values in the co-occurrence matrix to the diagonal.

For each distance and angle values, we have four feature values. Texture patterns in each image are represented
by three distance values and four angle values, therefore, for each image, we will have (3 x 4 x 4 =) 48 features.



Local Binary Patterns (LBP): LBP is a type of texture descriptor of an image, which captures local patterns in the
neighborhood of a pixel. For each pixel, it defines a radius (let r) and the patterns will be captured at the border of
the circle of radius r, centered at the pixel. This requires a number of equally separated points (let p) to be defined
on the border of the circle and the textures are captured at those points, with respect to the pixel at the center. The
higher the number of such points, the more detailed is the texture pattern captured at the radius r.

In our use case, we have used three different LBP feature descriptors: {LBP1: 5, 8}, {LBP2: 15, 10}, and
{LBP3: 25, 12}; where the keys represent their respectives codes (used later for referencing) and the values
represent the radius of the circles and the number of points used for each LBP descriptor. This will help us achieve
scale invariance to some extent. We have used Uniform two-rotation invariant LBP, with which we have achieved
rotational invariance and also reduced the number of features to p+2 for each LBP descriptor and for each image;
because only the pattern occurrence count is kept for each image. Thus, the aggregated count of features for each
image is (8 + 2) + (10 + 2) + (12 + 2) = 36.

Histogram of Oriented Gradients (HOG): ḤOG features are a set of gradient based feature extractors. Each image is
at first divided into cells and then the gradient of each cell is calculated using a 1D derivative Kernel. Then the
histogram of oriented histogram is calculated for each cell using the gradient magnitude, binned on the gradient
direction, which form the features for each cell. Finally, the cells are grouped into blocks, where each block can
contain one or more cells, both row and column wise. Accordingly the cell features are also grouped into the block
features. This block-wise grouping is performed for the entire image and the block features are joined together to
form the feature vector for each image.

A major issue of this process is that the number of features scale exponentially. A way to reduce the number of
features is to use this method only in a small Region of Interest (RoI). However, in case of histopathology images,
no specific RoIs can be declared, due to the randomness in the distribution of the lumen and also in their shape and
size. Thus, we had to apply this method on the entire image. To keep a limit on the number of features, we used
larger cell sizes. Typically, we have used two different sets of HOG features: {HOG1: (16, 16), (1, 1)} and {HOG2:
(32, 32), (2, 2)}; where the keys represent their respective codes, the first pair in the values represent the number of
pixels per cell and the second pair represents the number of cells per block. We got 1764 features from the first set
of HOG features and 1296 features from the second HOG feature set.

Gabor filters: The final set of feature extractors we used are the Gabor filters. They use properties of both spatial
(gaussian component) and frequency (sinusoidal waves) domains for capturing features from an input image. Seven
parameters are needed in total for defining one convolutional filter, which are:

1. x, y: size of the gabor filter
2. 𝜸: ellipticity of the filter
3. 𝝺: wavelength of the sinusoidal wave
4. θ: orientation of the wave
5. Ѱ: phase shift of the wave
6. 𝞼: spatial spread (standard deviation) of the gaussian component

These parameters give adequate control over the filter and thus can help us in capturing a much broader range of
textural features. However, at the same time, we are left with too many gabor filters to consider. We have
considered the following values for the parameters: {x: 21}, {y: 21}, {𝜸: 0.5}, {𝝺: 5, 10, 15}, {θ: 0, , , , ,π
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, , }, {Ѱ: 0}, and {𝞼: 4}. The output of each filter has the same size as that of the image. We have then5π
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extracted the following information from each filter convolution output:

1. Mean: It calculates the average of all the intensity values in the output image.
2. Variance: It is the spread of the intensity values around the mean.
3. Energy: It is the overall strength of the magnitude of the pixel values of the output image.



4. Kurtosis: Kurtosis measures the overall deviation of the distribution of the image pixel values from a
normal distribution.

5. Skewness: It measures the asymmetry in pixel value distribution of the image around the mean.
6. Contrast: It measures the overall variation in pixel values between the neighboring pixels.
7. Homogeneity: It is a measure of the uniformity of the intensity values distribution in the image.

After considering all the possible parameter combinations, a total of 24 Gabor filters were used. Each gabor
filter contributed to those 7 parameters. So, in total, we had (24 x 7 =) 168 feature contributions from each image.

4.2.2. Classification

For the purpose of classification of the images using a combination of the extracted features, we performed
some necessary preprocessing on the extracted features, followed by training an appropriate Machine Learning
model. The preprocessing steps included are:

1. Principal Component Analysis (PCA): The HOG feature descriptors have returned a huge feature set,
which should further be combined with other extracted features, resulting in a further larger feature set.
This large feature set can be a problem for us, given our limited availability of histopathology image
instances (Curse of Dimensionality). Thus PCA has been implemented for dimensionality reduction.

2. Train Test Split: The entire dataset was divided into training and testing datasets. We used 80% data to
train the models and 20% data to evaluate the effectiveness of the Machine Learning Algorithms. Thus,
the training set has 1782 instances and the testing set has 446 instances.

3. Standardization: The extracted features had values spread over a variety of ranges. So standardization
was required to bring them down to a similar scale. This is an essential requirement for the better
convergence of many Machine Learning algorithms. It is performed as per the following formula:
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4. SMOTE: As mentioned in the Dataset description section, there is a huge imbalance among the different
dataset classes. So to balance the classes in the training dataset, Synthetic Minority Oversampling
Technique was applied. It creates new data samples for the minority classes by interpolating data samples
in between the existing ones using the K-Nearest Neighbour technique. As a result of applying SMOTE,
our total number of training data instances increased from 1782 to 3816 instances.

After preprocessing, the following machine learning models were considered for inclusion in the multiclass
classification of the histopathology images:

Random Forest: Random Forest (RF) is an ensemble of multiple decision trees, typically using the bagging method,
to achieve more accurate predictions. It extends the bagging approach by incorporating both bagging and feature
randomness, creating an uncorrelated forest of decision trees. Instead of identifying the most important feature for
each node split, it selects the best feature from a random subset of features. Additionally, Random Forest can
measure the relative importance of each feature in making predictions. This method effectively reduces the risk of
overfitting, as averaging the predictions of uncorrelated trees decreases overall variance and prediction error.

Support Vector Classifier: Support Vector Classifier (SVC) is a specialized implementation of Support Vector
Machine (SVM) designed for classification tasks. SVC aims to identify the optimal hyperplane that can distinguish



between different classes of data points. It is capable of handling both linear and non-linear classification problems
by employing kernel functions. These functions transform the original feature space into a higher-dimensional
space where a linear separation is feasible. Common kernel functions used in SVC include linear, polynomial, and
radial basis function (RBF) kernels.

Gradient Boosting: Gradient Boosting Decision Tree (GBDT) is a widely-used machine learning algorithm for
classification tasks. It works by combining multiple weak learners to create a strong predictive model. Each weak
learner is trained to minimize a chosen loss function, such as mean squared error or cross-entropy, using gradient
descent. It is an iterative process that allows Gradient Boosting to effectively improve model accuracy and
robustness over time. Additionally, Gradient Boosting is highly flexible and can be adapted to various types of data
and problems.

LightGBM: The gradient boosting decision tree (GBDT) often requires considerable time as it evaluates every data
instance to determine the information gain for all potential splits of each feature. This process is particularly time
consuming, inefficient and challenging when dealing with high dimensional features and large datasets, making it
difficult to achieve satisfactory results. LightGBM (LGBM), a new GBDT based model delivers nearly the same
performance as traditional GBDT but trains faster. An advantage of LightGBM is its ability to optimally partition
categorical features, further enhancing its versatility and efficiency in various machine learning tasks.

XGBoost: XGBoost (XGB), which stands for ‘extreme gradient boosting’, is a decision tree based ensemble
method particularly effective for boosting. It employs a greedy algorithm and rapidly determines optimal
parameters through distributed processing. XGboost also has a flexible learning system allowing for model
optimization via various adjustable parameters.

The entire Machine Learning pipeline is summarized and visualized in Fig. 11. The hyperparameters set for each
ML model is shown in Table 2. After multiple experimentations, these were the best values found.

Fig. 11: An overview of the Machine Learning Pipeline

Table 2: Hyperparameter values for each model

Models XGB GB SVC RF LGBM

Hyperparameters n_estimators n_estimators C kernel n_estimators n_estimators

Values 300 300 1 RBF 400 70

4.2.3. Results and Discussion

After giving a detailed insight into our feature extraction method, the preprocessing steps and the Machine
Learning models we considered for training, in this section, we present the performance evaluation of our proposed
approach. It displays the detailed evaluation of the ML models on different combinations of the extracted features



(which shows a brief insight into our features selection process), thus demonstrating not only the performance of
the ML algorithms in classification, but also the importance of the features extracted by each feature extractor, thus
determining their contribution (and necessity) towards histopathology images (Table 3 and Table 4).

Table 3: Detailed Performance Evaluation of the ML pipeline, with multiple models trained on features
extracted by individual feature extractors

Features Models Precision (P) Recall (R) Accuracy (A)

LBP1

XGB
GB

SVC
RF

LGBM

0.62
0.61
0.60
0.65
0.60

0.63
0.63
0.66
0.66
0.64

0.63
0.63
0.66
0.66
0.64

LBP2

XGB
GB

SVC
RF

LGBM

0.65
0.61
0.67
0.64
0.63

0.66
0.63
0.68
0.66
0.65

0.66
0.63
0.68
0.66
0.65

LBP3

XGB
GB

SVC
RF

LGBM

0.53
0.53
0.62
0.54
0.54

0.56
0.54
0.60
0.57
0.57

0.56
0.54
0.60
0.57
0.57

GLCM

XGB
GB

SVC
RF

LGBM

0.59
0.57
0.56
0.55
0.56

0.62
0.61
0.60
0.59
0.60

0.62
0.61
0.60
0.59
0.60

HOG1

XGB
GB

SVC
RF

LGBM

0.34
0.37
0.33
0.26
0.31

0.41
0.40
0.39
0.40
0.38

0.41
0.40
0.39
0.40
0.38

HOG2

XGB
GB

SVC
RF

LGBM

0.44
0.43
0.43
0.36
0.43

0.49
0.47
0.52
0.43
0.50

0.49
0.47
0.52
0.43
0.50

Gabor filters

XGB
GB

SVC
RF

LGBM

0.75
0.73
0.75
0.75
0.73

0.76
0.74
0.75
0.73
0.74

0.76
0.74
0.75
0.73
0.74

Table 3 shows the Precision, Recall and Accuracy of the different models on the features extracted by individual
feature extractors and Table 4 shows these metric values for the model performances on different combinations of
these features. It can be noted that when no features are combined, the best performance is displayed by the models
trained on Gabor features, indicating that it has been most effective in extracting the essential features from the
images. Comparable results were obtained when the features from all the LBPs were combined (Table 4). The
lowest performance was shown by the models trained on the HOG features (Table 3). This can be attributed to the
fact that there are too many cells spread all over the histopathology images, which have a close to circular shape.
Inside a 16x16 or a 32x32 cell size, there are too many gradients in all directions due these small circular objects,
resulting in no useful gradient information being extracted from a cell/block. The performance of the models were
further depleted, when the HOG features were combined with other features (Table 4). These HOG features were
included after their dimensionality was reduced to 400 features using PCA. After multiple experimentations, we
found that the best set of features were provided by the combination of the three LBP features, the GLCM features



and the Gabor extracted features. However, even after numerous experiments, no significant improvement in
performance was seen after the usage of SMOTE on training data for handling data imbalance. As Table 4 shows,
the best performance is returned by the XGB model trained on the best set of features, without SMOTE. The
Precision, Recall and Accuracy values are also close to each other, indicating the conservation of the
Precision-Recall trade-off and a low chance of any additional bias or variance presence in the model.

Table 4: Detailed Performance Evaluation of the ML pipeline, with multiple models trained on different
combination of features

Features Number of
Features Models Precision (P) Recall (R) Accuracy (A)

LBP1 + LBP2 +
LBP3 36

XGB
GB

SVC
RF

LGBM

0.73
0.72
0.76
0.70
0.75

0.74
0.73
0.77
0.71
0.75

0.74
0.73
0.77
0.71
0.75

LBP1 + LBP2 +
LBP3 + HOG1 +

PCA (n=400)
436

XGB
GB

SVC
RF

LGBM

0.67
0.69
0.56
0.63
0.70

0.71
0.72
0.64
0.64
0.71

0.71
0.72
0.64
0.64
0.71

LBP1 + LBP2 +
LBP3 + HOG2 +

PCA (n=400)
436

XGB
GB

SVC
RF

LGBM

0.70
0.69
0.60
0.61
0.71

0.73
0.72
0.64
0.64
0.73

0.73
0.72
0.64
0.64
0.73

LBP1 + LBP2 +
LBP3 + GLCM +

Gabor filters
252

XGB
GB

SVC
RF

LGBM

0.83
0.82
0.81
0.77
0.82

0.83
0.82
0.81
0.77
0.82

0.83
0.82
0.81
0.77
0.82

LBP1 + LBP2 +
LBP3 + GLCM +

Gabor filters +
SMOTE

252

XGB
GB

SVC
RF

LGBM

0.82
0.82
0.82
0.78
0.81

0.81
0.82
0.82
0.78
0.81

0.81
0.82
0.82
0.78
0.81

Table 5: Confusion Matrix of XGB model trained on the best combination of features

Predicted Label

Actual
Label

Normal Polyp Adenocarcinoma High-grade
IN

Low-grade
IN

Serrated
Adenoma

Normal 8 5 0 0 2 0

Polyp 1 83 4 0 7 0

Adenocarcinoma 0 6 151 1 1 0

High-grade IN 0 0 15 14 8 0

Low-grade IN 0 9 9 1 108 1

Serrated
Adenoma 0 0 2 1 1 8

Class-wise
Accuracy 0.88 0.81 0.84 0.82 0.85 0.88



After establishing the best set of features and the best model for histopathology image classification, we now
present the confusion matrix for this model in Table 5. It clearly displays the class imbalance problem in our dataset
(‘Normal’ class has just 9 test instances, whereas ‘Adenocarcinoma’ class has 178 test instances). On the good side,
it can be seen that all the classes have similar performance values (and all of them being above 80%), indicating
that no class is underperformed by the model and no class is getting greater priority than the others.

4.3. Deep Learning

In this section of our colorectal cancer (CRC) study, we perform segmentation of different types of colorectal
histopathology images using deep learning techniques. For this purpose, we primarily employed different Unet
architectures including the vanilla Unet [17] with VGG16 backbone. We also used two other backbones including
ResNet50 and EfficientNet-b2. In the later experiments, we replaced the UNet with the nested UNet++ [18] and
also incorporated scSE (Concurrent Spatial and Channel Squeeze & Excitation) attention mechanisms [19],
enhancing its ability to focus on relevant features within the images. UNet++ was used because of its added
complexity on the decoder part and also its dense skip connections which propagates the features better than the
original UNet. All of the models were initialized using ImageNet pretrained weights.

4.3.1. ImageNet Dataset

The ImageNet dataset [20] is a comprehensive visual database containing over 14 million images that are
manually annotated across nearly 20,000 categories. Following the pioneering work of Krizhevsky et al. (2017)
with AlexNet, which won the ImageNet 2012 Challenge, many deep learning backbones have been trained on
ImageNet and are widely available for fine-tuning. In our study, we leveraged these pre-trained weights to initialize
our segmentation networks, providing several significant advantages:

1. Faster Convergence: Using pre-trained weights facilitated faster convergence during training, as the models
began with already learned features relevant to image recognition. This pre-training helped our models to
quickly adapt to our specific task of segmenting colorectal cancer (CRC) histopathology images.

2. Improved Performance: Pre-trained models often achieve improved performance, particularly when the
target dataset is limited in size, by transferring learned features from a large and diverse dataset.

3. Enhanced Feature Extraction: The rich set of features learned by these models on the ImageNet dataset is
highly generalizable, which is particularly beneficial for the initial layers of the network. This enhances
feature extraction and overall model robustness.

4.3.2. Model and Architecture

1. Segmentation Architectures

UNet: UNet is one of the most widely used biomedical image segmentation models, due its simplicity and
effectiveness. It has a symmetric encoder-decoder structure, connected through intricate skip connections to
preserve spatial information. The encoder progressively captures features at various spatial resolutions, while the
decoder reconstructs these features into a precise segmentation mask. This architecture ensures that both the global
context and the fine-grained details of the image are maintained, making it suitable and adept at tasks that require
detailed delineation of structures within medical images.

UNet++: Built on the solid foundation of UNet, UNet++ introduces a novel approach with its nested and dense skip
connections, significantly improving feature propagation and refinement and addressing the semantic gap between
the encoder and decoder feature maps. It has a more complex decoder structure that allows for superior feature
reuse, resulting in highly accurate segmentation. UNet++ can be particularly advantageous for complex
histopathology images, where subtle differences in tissue structures are critical. The added complexity and refined
connections in UNet++ may enable it to outperform the original UNet in capturing these intricate details.



2. Backbones

Backbones are pre-trained models that serve as feature extractors of a segmentation architecture. They are
typically trained on large and diverse datasets, such as ImageNet, to learn rich feature representations that can be
transferred to other tasks.

VGG16: The VGG16 backbone, pre-trained on the extensive ImageNet dataset, is renowned for its straightforward
yet powerful architecture. Comprising 13 convolutional layers, VGG16 excels in capturing fine texture details and
structural nuances. When integrated into the UNet framework, this backbone enhances the model’s ability to
segment detailed and intricate regions within histopathology images. The pre-training on ImageNet provides a solid
foundation, enabling the network to leverage rich, pre-learned features that expedite convergence and improve
overall segmentation performance.

ResNet50: ResNet50 introduces a deeper, more sophisticated architecture with 50 layers, utilizing residual
connections to mitigate the vanishing gradient problem commonly encountered in deep networks. This backbone is
particularly effective in capturing complex features and patterns, making it well-suited for advanced segmentation
tasks. In the context of UNet, the ResNet50 backbone strikes a balance between depth and computational
efficiency, allowing the model to handle complex histopathological features with enhanced accuracy and
robustness.

EfficientNet B0, B1, B2: EfficientNet architecture employs a compound scaling method to balance depth, width,
and resolution efficiently. Starting with EfficientNet-B0, this baseline model is designed for real-time and
resource-constrained environments, offering a lightweight yet effective solution for segmentation tasks. Pre-trained
on ImageNet, it provides a robust feature set right from the start. Moving up, EfficientNet-B1 increases its capacity,
enhancing performance while maintaining efficiency. It is ideal for applications requiring a moderate computational
increase, providing a balance that suits many standard hardware setups. EfficientNet-B2 further scales these
dimensions, delivering higher accuracy and better performance for large-scale and detailed segmentation tasks. Its
pre-training on ImageNet ensures a rich initialization for precise medical image analysis and other detailed
segmentation needs. Each model, from B0 to B2, integrates seamlessly into UNet architectures, boosting
segmentation precision while staying computationally feasible. This makes the EfficientNet series a state-of-the-art
solution for diverse and demanding segmentation challenges.

3. Attention Mechanisms

scSE (Concurrent Spatial and Channel Squeeze & Excitation): The scSE attention mechanism is a powerful
tool that significantly enhances the model’s ability to focus on the most relevant features within an image. By
recalibrating feature maps spatially and channel-wise, scSE ensures that the network can highlight critical regions
and suppress irrelevant information. This dual attention mechanism is particularly beneficial in medical imaging
tasks, where distinguishing between subtle tissue variations is crucial. Integrating scSE into the UNet++
architecture amplifies its effectiveness, enabling the model to achieve superior segmentation accuracy by
concentrating on the most pertinent aspects of the histopathology images. This attention mechanism is instrumental
in improving the model's precision, making it exceptionally adept at identifying and segmenting cancerous tissues
in colorectal histopathology images.

4.3.3. Experiments

1. Baseline: We trained and tested a baseline UNet model with the similar specification mentioned in the
reference paper of the dataset that we are working on. For this we used the vanilla UNet with VGG16 as the
backbone.

2. UNet with other backbones: Later we replaced the VGG16 backbone with ResNet50 and EfficientNet-B2
to check if the performance increases or not.



3. UNet++ with different backbones: In our study, we employed UNet++ as an alternative to the traditional
UNet architecture, utilizing three different backbones: EfficientNet-B0, EfficientNet-B1, and
EfficientNet-B2. Initially, our goal was to compare the performance of UNet++ using the same backbones as
in the vanilla UNet models. However, we encountered challenges due to the significantly higher complexity
and larger parameter sizes associated with UNet++ when paired with backbones like VGG16 and ResNet50.
These backbones, coupled with the intricate architecture of UNet++, made it infeasible to train the models
effectively within our computational constraints.

The experiments were conducted both with and without image augmentation to check for the role of data
augmentation towards the performance of these models.

4.3.4. Implementation

Training of all the models were trained on NVIDIA Tesla P100 16GB GPU. The whole training and inference
phases were built using Pytorch Framework. Pytorch Segmentation Models was used to build and load the models
which is an open source platform that provides a collection of semantic segmentation models with pre-trained
backbones using Pytorch framework. Mixed precision training, also known as half-precision training, leverages
both 16-bit (half-precision) and 32-bit (single-precision) floating-point arithmetic to train neural networks. This
technique can significantly enhance the efficiency of training deep learning models, particularly on modern GPUs
with dedicated support for mixed precision operations. For these reasons, mixed precision training was utilized
during the training phase to achieve stable, efficient, and faster gradient optimization and backpropagation. This
was accomplished using PyTorch's Automatic Mixed Precision (AMP) package, which dynamically adjusts the
precision of computations to optimize performance while maintaining numerical stability. The experiments were
tracked using Weights & Biases for efficient comparison between different models.

4.3.5. Data preprocessing

All of the images were of the same size of 224*224 which didn’t require any resizing. So the only data
preprocessing step was to normalize the images. Since the images were RGB, mean and standard deviation were
calculated for the three channels and then the images were normalized across the three channels.

4.3.6. Data Augmentation

Data Augmentation was used in 50% of the training experiments. We used offline-augmentation to increase the
number of images in our Dataset. We built a custom sampling function that takes into account the distribution of the
cancer types and gives higher weights to minority classes to mitigate the class imbalance in the dataset. Our
augmentation pipeline was built to a randomly apply one of the following transformations: (i) Color Jitter with
magnitudes (brightness=0.4, contrast=0.4, saturation=0.4), (ii) Gaussian Blur with magnitudes (kernel_size=[3, 7],
sigma=[0.1, 3.]), (iii) Random Sharpness Adjustment with magnitudes (sharpness_factor=2) and (v) Gaussian
Noise Addition with magnitudes (stddev=0.1).

4.3.7. Training hyperparameters

The model was trained with a batch size of 16 for training and 200 for validation, with an input image size of
224x224 pixels. The training process spanned 50 epochs with an initial learning rate of 1*e-4, gradually reduced
using a Cosine Annealing scheduler to a minimum learning rate of 1*e-6 which again increased in a cyclic way. The
optimization was handled by the Adam optimizer with a weight decay of 1*e-5. An upgraded Diceloss was used as a
loss function to train the model. This particular implementation modifies the standard Dice loss by incorporating
squared terms in the denominator, which can help in situations with imbalanced classes. To complement the loss,
Dice-coefficient was the primary metric to monitor the training and validation and control certain functionalities
such as early stopping criteria during the training phase (for halting training in case of no further performance
improvement after 7 epochs). A 5-fold cross-validation approach ensured robustness and generalizability of the
model, leveraging a dynamic learning rate scheduler and early stopping to avoid overfitting.



4.3.8. Performance and Result Analysis

To evaluate our approach, we calculated several metrics including Dice Score, Jaccard Similarity, Precision,
Recall, and Accuracy for the models on a dedicated test set. We compared the performance both with and without
data augmentation using cross-validation. The following sections have the detailed result analysis based on the
approaches and classes.

Training and Validation Performance Evaluation: As shown in Fig. 12, the performance of the three UNet models
with different backbones was strong overall, with the EfficientNet-based model slightly outperforming the others
with an average Dice Score of 0.954. The Jaccard Similarity scores were slightly lower than the Dice Scores,
averaging around 0.9 for all models.

The performance of UNet++ models was also similar to that of the UNet models, albeit with a marginally lower
average Dice Score of 0.945 and a Jaccard Score of 0.89, as depicted in Fig. 12. All models employed early
stopping criteria and ceased training before reaching 50 epochs to mitigate the risk of overfitting.

Among the models, the vanilla UNet demonstrated better performance compared to the UNet++ variants, and
the UNet with the EfficientNet-B2 backbone provided the best results. Notably, the validation loss plateaued at
around 0.041, while the training loss plateaued at approximately 0.02, indicating the onset of overfitting in the later

a. Train Loss b. Valid Loss

c. Valid Dice Score d. Valid Jaccard Similarity

Fig. 12: Performance of UNet with different backbones in Training and Validation Phase.



stages of training. Consequently, we saved the model at the epoch where it achieved the best validation score to
ensure optimal performance.

We also conducted experiments incorporating various image augmentations to evaluate their effect on model
performance. Contrary to our expectations, the application of augmentations did not lead to any improvements;
instead, there was a slight decrease in performance across all models. This decline in performance can be attributed
to the unique characteristics of histopathology images. Histopathology images exhibit significant heterogeneity in
texture and shape, which is critical for accurate segmentation. However, the color of the stains used in these images
is highly specific and standardized. Augmenting images by altering contrast, brightness, or applying other
transformations can inadvertently distort these color-specific features, leading to a loss of crucial information that
the models rely on for accurate segmentation.

For instance, adjustments in contrast or color balance might obscure subtle yet important differences in tissue
types that are essential for distinguishing between healthy and cancerous cells. This alteration likely explains the
reduction in segmentation accuracy observed after applying augmentations. For this reason we decided to use
models trained on the original dataset without augmentations for the inference phase. The decision is rooted in the
unique properties of histopathology images, where color consistency and specific staining patterns are crucial for
accurate segmentation.

Inference Performance Evaluation: In our evaluation, we assessed the inference performance of various UNet and
UNet++ models with different backbones, focusing on the previously mentioned key metrics. The results, detailed
in Table 6, highlight the comparative performance of these models. The baseline UNet with VGG16 backbone
achieved a Dice Score of 0.9337 and a Jaccard Similarity of 0.8921, indicating strong segmentation performance.
This model also demonstrated high Precision (0.9305), Recall (0.9397), and Accuracy (0.9402). The UNet with
ResNet50 backbone showed slightly improved performance, with a Dice Score of 0.9353 and a Jaccard Similarity
of 0.8952. This configuration also maintained high Precision (0.9308) and Recall (0.9429), resulting in an
Accuracy of 0.9421. Among the UNet models, the UNet with EfficientNet-B2 backbone outperformed the others,
achieving the highest Dice Score of 0.9372 and a Jaccard Similarity of 0.8986. It also excelled in Precision
(0.9323), Recall (0.9448), and Accuracy (0.9448), showcasing its superior ability to balance performance and
efficiency.

Table 6: Detailed Performance of DL models with different combinations in Inference Phase

For the UNet++ models, UNet++ with EfficientNet-B0 and scSE attention delivered a Dice Score of 0.9328 and
a Jaccard Similarity of 0.8909. Despite slightly lower metrics, it maintained high Precision (0.9315) and Recall

Models Dice Score Jaccard
Similarity Precision (P) Recall (R) Accuracy (A)

Baseline Unet
Backbone: VGG16 0.9337 0.8921 0.9305 0.9397 0.9402

UNet
Backbone: ResNet50 0.9353 0.8952 0.9308 0.9429 0.9421

UNet
Backbone: EfficientNet-B2 0.9372 0.8986 0.9323 0.9448 0.9448

UNet++
Attention: scSE

Backbone: EfficientNet-B0
0.9328 0.8909 0.9315 0.9377 0.9387

UNet++
Attention: scSE

Backbone: EfficientNet-B1
0.9337 0.8926 0.9305 0.9408 0.9403

UNet++
Attention: scSE

Backbone: EfficientNet-B2

0.9289 0.8846 0.9211 0.9417 0.9330



(0.9377), with an Accuracy of 0.9387. The UNet++ with EfficientNet-B1 and scSE attention performed similarly to
the B0 variant, with a Dice Score of 0.9337 and a Jaccard Similarity of 0.8926. It also exhibited robust Precision
(0.9305), Recall (0.9408), and Accuracy (0.9403). However, the UNet++ with EfficientNet-B2 and scSE attention
had a lower performance compared to the other UNet++ configurations, with a Dice Score of 0.9289 and a Jaccard
Similarity of 0.8846. Its Precision (0.9211) and Accuracy (0.9330) were also somewhat reduced, although Recall
(0.9417) remained high.

Overall, the analysis indicates that while UNet models with EfficientNet-B2 backbone consistently
outperformed others, the UNet++ variants, particularly those with EfficientNet-B1, provided competitive results.

Class-wise Inference Performance Evaluation: During inference, the class-wise performance of our model closely
mirrored the results observed during validation. Table 7 provides a detailed breakdown of the model's performance
across various tissue classes, highlighting its capability in segmenting different types of tissues. Normal tissues
posed a greater challenge for the model, achieving a Dice Score of 0.6267 and a Jaccard Similarity of 0.6062.
Despite these lower scores compared to other tissue types, the model maintained high Precision (0.6236), Recall
(0.6279), and Accuracy (0.9745), indicating that the segmentation was still reasonably reliable.

For Adenocarcinoma, the model recorded a Dice Score of 0.9323 and a Jaccard Similarity of 0.8778. The
Precision and Recall were 0.9292 and 0.9415, respectively, with an Accuracy of 0.9188. These scores highlight the
model's competence in segmenting malignant tissues, which is crucial for effective cancer diagnosis. In segmenting
Serrated Adenoma, the model delivered a Dice Score of 0.9459 and a Jaccard Similarity of 0.8993. The
performance remained robust with a Precision of 0.9482, Recall of 0.9471, and an Accuracy of 0.9303, indicating
the model's effectiveness in identifying these specific adenomas.

Table 7: Detailed performance of the best model with different evaluation metrics for each class followed by the
combined performance for all classes.

The model excelled in segmenting Polyp tissues, achieving a remarkable Dice Score of 0.9710 and a Jaccard
Similarity of 0.9442. These metrics reflect the model's ability to accurately delineate polyps, with Precision and
Recall scores of 0.9656 and 0.9771, respectively, and an overall Accuracy of 0.9682. This high performance
suggests the model's robustness in detecting and segmenting polyps, which are critical for identifying early-stage
abnormalities. For both Low-grade IN (Intraepithelial Neoplasia) and High-grade IN, the model performed
exceptionally well, with high performance metric values, thus demonstrating the model's effectiveness in
segmenting these cancer stages accurately.

Overall, the combined performance across all classes was strong, with a high average Dice Score and Jaccard
Similarity values. These metrics underscore the model's reliable performance in segmenting a variety of tissue
types, particularly excelling in detecting and delineating cancerous tissues. The consistent performance across
different classes demonstrates the model's robustness and potential for practical usage in medical image analysis.

Dice Score Jaccard Similarity Precision Recall Accuracy

Normal 0.6267 0.6062 0.6236 0.6279 0.9745

Polyp 0.9710 0.9442 0.9656 0.9771 0.9682

Low-grade IN 0.9646 0.9458 0.9646 0.9801 0.9625

High-grade IN 0.9391 0.8868 0.9331 0.9479 0.9221

Adenocarcinoma 0.9323 0.8778 0.9292 0.9415 0.9188

Serrated Adenoma 0.9459 0.8993 0.9482 0.9471 0.9303

Combined
Performance over all

classes
0.9372 0.8986 0.9323 0.9448 0.9448



Visual Analysis of Segmentation Performance: Fig. 13 provides a comparative visual representation of the
segmentation masks generated by various UNet models with different backbones across different cancer types.
These models include the baseline UNet with VGG16, UNet with ResNet50, and UNet with EfficientNet variants
(B0, B1, B2).

Across the images, we observe that the models generally produce similar segmentation outputs, particularly in
distinguishing the cancerous tissues from the background. However, they encounter challenges in accurately
segmenting certain classes, especially when dealing with subtle or intricate pixel variations. For instance, in the
segmentation of Low-grade IN (Intraepithelial Neoplasia), all models show consistent discrepancies when
compared to the ground truth masks. These differences highlight the models' difficulties in precisely capturing the
fine details of this class, suggesting a need for further refinement or additional post-processing to improve
accuracy. Polyp tissues are well-segmented across all models, reflecting the high Dice Score and Jaccard Similarity
metrics reported earlier. This consistency underscores the models' robustness in handling more distinct and less
ambiguous tissue structures.

Fig. 13: Predicted Segmentation Masks by UNet with different backbones for all the cancer types.

For High-grade IN and Adenocarcinoma, the models produce segmentation masks that are closely aligned
with the ground truth, though slight differences are still observable.This could be attributed to the tissues' more
heterogeneous nature, making them harder to segment accurately. These slight variations emphasize the need for
models that can better capture the complexity and variability within these cancer types. Serrated Adenoma
segmentation is another area where models perform well, yet subtle segmentation differences still appear. These
differences may impact the precision required for clinical applications, highlighting the importance of further
tuning and optimization.



Overall, the visual inspection in Fig. 13 reveals that while the UNet models with different backbones perform
effectively in segmenting various cancerous tissues, there remain consistent challenges across all classes,
particularly in capturing fine details. The consistent patterns of segmentation discrepancies suggest that enhancing
model sensitivity to pixel-level variations could be beneficial in improving segmentation quality across all classes.
This analysis supports the quantitative metrics presented earlier, illustrating the strengths and weaknesses of each
model visually and underscoring the need for ongoing improvements in medical image segmentation tasks.

The original dataset contains the patch size images instead of the whole slide hence the shape of the tissues are
not intact in the corners which eventually leads to difficulty in the segmentation. An overview from Fig. 13 gives
the insight that the models are generally having difficulty in segmenting the tissues in the corners for every image.

5. Conclusion

In this work, we addressed the issue of Colorectal Cancer classification and segmentation from histopathological
images, and we accordingly proposed three different solutions. The first solution is purely based on advanced
image analysis techniques, which is used to perform image segmentation. We accordingly designed three
specialized pipelines for the different classes of the histopathological images. The average dice score for this
solution is 82%. The next solution is for the classification of the images into one of the six types: Normal, Polyp,
Low-grade IN, High-grade IN, Serrated Adenoma and Adenocarcinoma. The solution is based on extracting
features from the images using Linear Binary Patterns, Gray-Level Co-occurrence Matrix and Gabor filters, and
then using those features for training multiple classification models like XGBoost, SVC, etc and selecting the best
performing model out of them. The classification accuracy is 83% by XGBoost model. The final solution is based
on deep learning, and has been employed to perform segmentation of the histopathology images. After extensive
experimentations, the UNet model with an EfficientNet-B2 backbone was found to be the best performing model
with a dice score of 93%, thus clearly demonstrating its capability in extracting semantically essential features from
the input image and performing an accurate segmentation.

Possible future works can include developing more efficient pipelines and models that can help in achieving an
even higher performance, like using an ensemble of models. Other future works can include checking the
effectiveness of the solutions proposed for colorectal cancer histopathology images on other types of
histopathology images.
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